References

Brown, I. D. (1976). Acta Cryst. A 32, 24-31.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.
Hewat, A. W. (1973a). Rutherford Report RRL 73/239. The Rietveld computer program for the profile refinement of neutron diffraction powder patterns modified for anisotropic thermal vibrations.

Hewat, A. W. (1973b). J. Phys. C, 6, 2559-2572.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Longo, J. M. \& Arnott, R. J. (1970). J. Solid State Chem. 1, 394-398.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Tachez, M. \& Théobald, F. (1980). Acta Cryst. B36. 2873-2880.

Acta Cryst. (1982). B38, 1809-1811

Refinement of the Structure of Tellurium Phosphate $\mathrm{Te}_{2} \mathrm{O}_{3} \cdot \mathrm{HPO}_{4}{ }^{*}$

By N. W. Alcock and W. D. Harrison
Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL, England

(Received 2 December 1981; accepted 15 February 1982)

Abstract

Te}_{2} \mathrm{HPO}_{7}\), orthorhombic, $P c a 2_{1}, a=$ 10.239 (1), $b=7.018$ (1), $c=7.933$ (1) $\AA, V=$ $570 \cdot 1$ (1) $\AA^{3}, Z=4, M_{r}=399 \cdot 2, D_{c}=4.65 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K())=0.71069 \AA, \mu($ Мо $K x)=105.2 \mathrm{~cm}^{-1}$; data for 696 diffractometer-observed reflections [I/ $\sigma(I) \geq 3.0], R=0.022$. The two Te atoms adopt trigonal-bipyramidal geometry [Te-O 1.903 (9)$2 \cdot 183$ (8) \AA] with several secondary interactions $[\mathrm{Te} \cdots \mathrm{O} \quad 2.730(10)-3.262(8) \AA$], the shortest of which completes distorted square-based pyramidal geometry at $\mathrm{Te}(2)$.

Introduction. Several $\mathrm{Te}^{\mathrm{IV}}$ oxy salts are reported to exist (Klein \& Morel, 1885), including the nitrate $\mathrm{Te}_{2} \mathrm{O}_{4} \cdot \mathrm{HNO}_{3}$ (Swink \& Carpenter, 1966), the sulphate $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ (Johansson \& Lindqvist, 1976; Hubková, Loub \& Syneček, 1966) and the two phosphates $\mathrm{Te}_{2} \mathrm{O}_{3} \cdot \mathrm{HPO}_{4}$ (Mayer, 1975) and $\mathrm{Te}_{4} \mathrm{O}_{5}\left(\mathrm{PO}_{4}\right)_{2}$ (Mayer \& Pupp, 1977), whose structures are known. Reports of the perchlorate $2 \mathrm{TeO}_{2} \cdot \mathrm{HClO}_{4}$ (Fichter \& Schmid, 1916), the periodate $2 \mathrm{TeO}_{2} . \mathrm{HIO}_{4}$ (Montignie, 1945) and another phosphate $2 \mathrm{TeO}_{2} . \mathrm{HPO}_{4}$ (Mayer, 1975) do not include structural information. The structures of several aryl-substituted Te salts (Alcock \& Harrison, 1982) all contain secondary bonds and it was decided to investigate the remaining unsubstituted salts. We have found that the reported preparations of the perchlorate and periodate give only crystals of tetragonal $\alpha-\mathrm{TeO}_{2}$ and orthotelluric acid respectively.

We repeated the reported preparation of $2 \mathrm{TeO}_{2} \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$, isolating colourless platy crystals by

[^0]0567-7408/82/061809-03\$01.00
dissolving TeO_{2} in orthophosphoric acid at 383 K and allowing the solution to cool. The air-stable crystals were collected, washed with water and acetone and dried in air. On examination by single-crystal X-ray analysis, the crystals were found to be identical to those of the previously reported $\mathrm{Te}_{2} \mathrm{O}_{3} \cdot \mathrm{HPO}_{4}$. As this structure was based on Weissenberg data, refined isotropically to $R=0 \cdot 10$, we describe here a refinement to higher accuracy enabling us to discuss the primary and secondary bonding in more detail.
Data were collected with a Syntex $P 2_{1}$ four-circle diffractometer. The maximum 2θ was 50°, with a scan range of $\pm 1 \cdot 0^{\circ}(2 \theta)$ around the $K a_{1}-K a_{2}$ angles, and the scan speed was $2-29^{\circ} \mathrm{min}^{-1}$, depending on the intensity of a 2 s pre-scan; backgrounds were measured at each end of the scan for 0.25 of the scan time. Three standard reflections were monitored every 100 reflections, and showed no significant changes during data collection. Unit-cell dimensions and standard deviations were obtained by least-squares fit to 15 high-angle reflections. 696 observed reflections $|I / \sigma(I) \geq 3.0|$ were used in the refinement, and corrected for Lorentz, polarization and absorption effects, the last with ABSCOR (Alcock, 1970). Systematic absences, 0kl, l $\neq 2 n ; h 0 l, h \neq 2 n ; h 00(h \neq 2 n)$, indicate space group Pca2 ${ }_{1}$, as in the previous report.
The positions of two Te atoms were located by direct methods using MULTAN 80 (Main, 1980) and a trial solution, after two cycles of isotropic refinement, gave $R=0.182$. The remaining non -H atoms were located by successive difference Fourier syntheses and anisotropic least-squares refinements. An empirical weighting scheme was employed giving decreased weight to reflections with high $F_{\text {obs }}$ and low $\sin \theta$. The final R
(c) 1982 International Union of Crystallography

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$, with e.s.d.'s in parentheses

$U_{\text {eq }}=\frac{1}{3} \grave{L}_{i} \grave{L}_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cu }}$
$\mathrm{Te}(1)$	1373.9 (6)	1656.4 (9)	0	7
$\mathrm{O}(1)$	2483 (8)	709 (10)	1732 (12)	12
$\mathrm{O}(2)$	1433 (8)	-1181(11)	-815 (10)	11
$\mathrm{O}(4)$	-143 (8)	840 (11)	1264 (12)	11
$\mathrm{P}(1)$	716 (3)	4729 (4)	3074 (4)	9
$\mathrm{O}(5)$	1089 (9)	6684 (12)	3647 (14)	57
$\mathrm{O}(3)$	-763 (8)	4546 (12)	2784 (12)	57
$\mathrm{O}(7)$	1112 (9)	3240 (14)	4482 (12)	57
$\mathrm{O}(6)$	1463 (8)	4163 (11)	1488 (11)	57
$\mathrm{Te}(2)$	$3215.7(6)$	-1987.9 (9)	1936.1 (14)	57

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Te}(1)-\mathrm{O}(1) \quad 1$.	1.903 (9)	$\mathrm{Te}(2)-\mathrm{O}(2 b) \quad 1$.	(8)
$\mathrm{Te}(1)-\mathrm{O}(4) \quad 1.93$	1.935 (8)	$\mathrm{Te}(2)-\mathrm{O}(4 \mathrm{c}) \quad 1.93$	1.939 (8)
$\mathrm{Te}(1)-\mathrm{O}(2) \quad 2.09$	2.094 (8)	$\mathrm{Te}(2)-\mathrm{O}(1)$	
$\mathrm{Te}(1)-\mathrm{O}(6) \quad 2$.	$2 \cdot 120$ (8)	$\mathrm{Te}(2)-\mathrm{O}(3 \mathrm{c}) \quad 2.183$	$2 \cdot 183$ (8)
$\mathrm{Te}(1)-\mathrm{O}(7 f) \quad 2.83$	2.834 (10)	$\mathrm{Te}(2)-\mathrm{O}(5 a) \quad 2.73$	2.730 (10)
$\mathrm{Te}(1)-\mathrm{O}(1 f) \quad 2.9$	2.921 (9)	$\mathrm{Te}(2)-\mathrm{O}(5 d) \quad 2.8$	$2 \cdot 860$ (11)
$\mathrm{Te}(1)-\mathrm{O}(5 e) \quad 2$.	2.977 (9)	$\mathrm{Te}(2)-\mathrm{O}(2) \quad 2.90$	2.901 (8)
$\mathrm{Te}(1)-\mathrm{O}(3 e) \quad 3$.	3.254 (9)	$\mathrm{Te}(2)-\mathrm{O}(6 a) \quad 3.26$	$3 \cdot 262$ (8)
$\mathrm{P}(1)-\mathrm{O}(3) \quad 1$.	1.537 (8)	$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(5)$	111.9 (5)
$\mathrm{P}(1)-\mathrm{O}(5) \quad 1$.	1.496 (9)	$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(6)$	110.4 (5)
$\mathrm{P}(1)-\mathrm{O}(6) \quad 1$.	1.526 (9)	$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(7)$	107.7 (5)
$\mathrm{P}(1)-\mathrm{O}(7) \quad 1$	1.582 (10)	$\mathrm{O}(5)-\mathrm{P}(1)-\mathrm{O}(6)$	111.2 (5)
		$\mathrm{O}(5)-\mathrm{P}(1)-\mathrm{O}(7)$	109.0 (6)
		$\mathrm{O}(6)-\mathrm{P}(1)-\mathrm{O}(7)$	106.4 (5)
$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(4)$	4) 90.1 (4)	$\mathrm{O}(1)-\mathrm{Te}(2)-\mathrm{O}(2 b)$	82.4 (4)
$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(2)$	2) $82.7(3)$	$\mathrm{O}(1)-\mathrm{Te}(2)-\mathrm{O}(3 \mathrm{c})$	164.2 (4)
$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(6)$	6) 82.1 (3)	$\mathrm{O}(1)-\mathrm{Te}(2)-\mathrm{O}(4 \mathrm{c})$	84.9 (3)
$\mathrm{O}(4)-\mathrm{Te}(1)-\mathrm{O}(2)$	2) 84.4 (3)	$\mathrm{O}(2 b)-\mathrm{Te}(2)-\mathrm{O}(3 c)$	$82 \cdot 3$ (3)
$\mathrm{O}(4)-\mathrm{Te}(1)-\mathrm{O}(6)$	6) $89.5(3)$	$\mathrm{O}(2 b)-\mathrm{Te}(2)-\mathrm{O}(4 c)$	88.3 (4)
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(6)$	6) 163.6 (3)	$\mathrm{O}(3 \mathrm{c})-\mathrm{Te}(2)-\mathrm{O}(4 \mathrm{c})$	90.6 (3)
$\mathrm{Te}(1)-\mathrm{O}(4)-\mathrm{Te}(2)$	(2) $135 \cdot 6(4)$	$\mathrm{Te}(1)-\mathrm{O}(1)-\mathrm{Te}(2)$	126.9 (4)
$\mathrm{Te}(1)-\mathrm{O}(2)-\mathrm{Te}(2)$	(2) $125 \cdot 2(4)$		

Symmetry code
(a) $x, y-1, z$
(d) $\frac{1}{2}-x, y-1, z-\frac{1}{2}$
(e) $-x_{1}, y_{n}-y, z-\frac{1}{2}$
(b) $\frac{1}{2}-x_{1}, y, \frac{1}{2}+z$
(e) $\quad-x, 1-y, z-\frac{1}{2}$
(f) $\quad \frac{1}{2}-x, y, z-\frac{1}{2}$
value was 0.022 .* A final difference Fourier synthesis showed no significant features. All refinement calculations were carried out using the XRAY 76 suite of programs (Stewart, 1976) on a Burroughs B6700 computer. Scattering factors (used in their analytical form) were from International Tables for X-ray

[^1]Crystallography (1974). Atom coordinates are given in Table 1 and bond lengths and angles in Table 2.

Discussion. The asymmetric unit consists of one molecule of $\mathrm{Te}_{2} \mathrm{O}_{3} . \mathrm{HPO}_{4}$ (Fig. 1). Atoms $\mathrm{O}(1), \mathrm{O}(2)$ and $\mathrm{O}(4)$ link the Te atoms into two-dimensional $(\mathrm{TeO})_{n}$ layers. The atoms $\mathrm{O}(1)$ and $\mathrm{O}(2)$ form asymmetric μ-oxo bridges between the Te atoms $[\mathrm{Te}(1)-\mathrm{O}(1) \quad 1.903(9), \quad \mathrm{Te}(2)-\mathrm{O}(2) \quad 1.906$ (8), $\mathrm{Te}(1)-\mathrm{O}(2) \quad 2.094$ (8), $\quad \mathrm{Te}(2)-\mathrm{O}(1) \quad 2.042$ (7) \AA; $\mathrm{Te}(1)-\mathrm{O}(1)-\mathrm{Te}(2) \quad 126.9$ (4), $\quad \mathrm{Te}(2)-\mathrm{O}(2)-\mathrm{Te}(1)$ $125.2(4)^{\circ} \mathrm{J}$. Atom $\mathrm{O}(4)$ forms a more open, symmetrical μ-oxo bridge $[\mathrm{Te}(1)-\mathrm{O}(4) 1.935$ (8), $\mathrm{Te}(2)-\mathrm{O}(4)$ 1.939 (8) \AA; $\mathrm{Te}(1)-\mathrm{O}(4)-\mathrm{Te}(2) 135.6$ (4) ${ }^{\circ}$; this large angle is unusual $1 c f .98 .2(1 \cdot 1)$ to $126.2(8)^{\circ}$ in $\mathrm{Te}_{2} \mathrm{O}_{4} \cdot \mathrm{HNO}_{3}$ and $119-127^{\circ}$ in $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4} \mathrm{l}$. Each Te atom has one short contact to a phosphate O $\lceil\mathrm{Te}(1)-\mathrm{O}(6) 2 \cdot 120$ (8) and $\mathrm{Te}(2)-\mathrm{O}(3) 2 \cdot 183$ (8) $\AA\rceil$. The $\mathrm{P}-\mathrm{O}$ distances vary; the shortest is $\mathrm{P}(1)-\mathrm{O}(5)$ 1.496 (9) \AA, essentially a double bond, and the longest is $\mathrm{P}(1)-\mathrm{O}(7) 1.582(10) \AA$, which is consistent with a single bond; $\mathrm{O}(7)$ is presumed to carry a proton (not located on the difference Fourier map) which could be hydrogen bonded to either $\mathrm{O}(1) \mid \mathrm{O}(7)-\mathrm{O}(1)$ $2.90(1) \AA \mid$ or $O(2)|O(7)-O(2) 2.99(1) \AA|$. The remaining $\mathrm{P}-\mathrm{O}$ bonds are of intermediate length $\mid \mathrm{P}(1)-\mathrm{O}(3) 1.537(8)$ and $\mathrm{P}(1)-\mathrm{O}(6) 1.526$ (9) $\AA \mid$ and it is these phosphate O atoms that form short bonds to the Te atoms.

About $\mathrm{Te}(1)$, the geometry is essentially distorted trigonal-bipyramidal with $\mathrm{O}(2)$ and $\mathrm{O}(6)$ occupying the axial positions $\left[\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(6) 163 \cdot 6(3)^{\circ}\right]$ and $O(1)$ and $O(4)$ the equatorial positions $\left|\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(4) 90 \cdot 1(4)^{\circ}\right|$. Four weak secondary bonds ($2 \cdot 83-3.25 \AA$) cluster around the lone pair in the vacant equatorial position; this is similar to the geometry in the aryltellurium nitrates (Alcock \& Harrison, 1982). $\mathrm{Te}(2)$ has a shorter interaction with $\mathrm{O}(5) \quad[2.730(10) \AA]$, nearly trans to $\mathrm{O}(4)$ $\mathrm{O}(5 a)-\mathrm{Te}(2)-\mathrm{O}(4) \quad 166 \cdot 0(4)^{\circ} \%$. occupying the fifth

Fig. 1. $\mathrm{Te}_{2} \mathrm{O}_{3} . \mathrm{HPC}_{4}$: the atomic numbering. the primary bonds (filled). and the secondary interactions (open).
position of a distorted octahedron with one vacant site (Alcock, 1972). However, the trans $\mathrm{Te}(2)-\mathrm{O}(4)$ bond shows no apparent shortening, and $\mathrm{Te}(2)$ may better be regarded as showing the same geometry as $\mathrm{Te}(1)$, with four interactions ($2.73-3.26 \AA$) clustered around the vacant face. Its primary geometry is also distorted trigonal-bipyramidal, with $\mathrm{O}(1)$ and $\mathrm{O}(3)$ axial $[\mathrm{O}(1)-$ $\mathrm{Te}(2)-\mathrm{O}(3) 164 \cdot 2(4)^{\circ} \mathrm{l}$ and $\mathrm{O}(2)$ and $\mathrm{O}(4)$ equatorial $\left[\mathrm{O}(2)-\mathrm{Te}(2)-\mathrm{O}(4) 88.3(4)^{\circ}\right]$.

The structure contrasts with that of $\mathrm{Te}_{2} \mathrm{O}_{4} \cdot \mathrm{HNO}_{3}$ (Swink \& Carpenter, 1966) which adopts a grossly distorted trigonal-bipyramidal geometry. The axialaxial ligand angle is as low as $147.8(8)^{\circ}$ and the equatorial angle is $100.0(8)^{\circ}$. The four O atoms bound to the Te atom are all of the μ-oxo type and the nitrate groups are not directly bound to the Te atoms. As with the title compound there are three secondary bonds [2.800 (16)-2.888(23) \AA | which make no rational geometry at the Te atom. The structure also contrasts with that of $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ (Johansson \& Lindqvist, 1976) where the Te atom adopts a geometry with three bridging O atoms in a plane with the Te atom, and a fourth bridging O perpendicular to the plane. Two long interactions to sulphato O atoms complete a very distorted octahedral arrangement about the Te atom. The primary arrangement cannot be considered trigonal-bipyramidal, as the largest $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ angle is only $130 \cdot 5(4)^{\circ}$.

All three compounds consist of two-dimensional layers of $\mathrm{Te}-\mathrm{O}$ networks with anions between the layers. In the case of the title compound, the phosphate anions are strongly bound by two O atoms $[\mathrm{O}(3)$ and $\mathrm{O}(6) \mid$ to two Te atoms of one layer and weakly bound by $\mathrm{O}(5)$ to one Te in the next layer. In the sulphate the anions are bound to layers in a similar fashion. In the nitrate the nitric acid molecules are not directly
attached to the Te atoms but are attached to bridging O atoms by hydrogen bonding.

We thank SERC for a post-doctoral fellowship (WDH).

References

Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 271-278. Copenhagen: Munksgaard.
Alcock, N. W. (1972). Adr. Inorg. Chem. Radiochem. 15, 1-58.
Alcock, N. W. \& Harrison, W. D. (1982). J. Chem. Soc. Dalton Trans. In the press.
Fichter, F. \& Schmid, M. (1916). Z. Anorg. Chem. 98, 141-144.
Hubková, H., Loub, J. \& Syneček, V. (1966). Coll. Czech. Chem. Commun. 31.4353-4361.
International Tables for X-ray Cristallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johansson, G. B. \& Lindqvist, O. (1976). Acta Cryst. B32. 2720-2722.
Klein, D. \& Morel, J. (1885). Bull. Soc. Chim. Fr. pp. 198-207: Ann. Chim. Phys. 5, 59.
Main, P. (1980). MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England.
Mayer, H. (1975). Z. Kristallogr. 141, 354-362.
Mayer, H. \& Pupp, G. (1977). Z. Kristallogr. 145. 321-333.
Montignie, E. (1945). Z. Anorg. Chem. 253, 90-91.
Stewart, J. M. (1976). The XRAY 76 system. Tech. Rep. TR-466. Computer Science Center, Univ. of Maryland. College Park, Maryland.
Swink, L. N. \& Carpenter. G. B. (1966). Acta Cryst. 21. 578-583.

[^0]: *Secondary Bonding. 10. Part 9: Alcock \& Harrison (1982).

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36744 (7 pp .). Copies may be obtained through The Executive Secretary. International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

